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A METHOD-OF-MOMENTS SOLUTION FOR DISPERSION CHARACTERISTICS
OF ARBITRARILY-CONFIGURED TRANSMISSION MEDIA
I. INTRODUCTION

The success of microstrip in microwave integrated circuit appli-
cations has caused considerable interest in the calculation of dispersion
characteristics of these lines. A number of different techniques (1-4]
have been employed to obtain dispersive effects of open and shielded
microstrip-like transmission lines with rectangular cross-sectionms.

Since microstrip becomes lossy and difficult to fabricate at higher
microwave frequencies, attention has focused on configuring new trans-
mission media. 1In this report we present a technique for calculating the
dispersion characteristics of electromagnetic wave propagation along
guiding structures consisting of a finite number of uniform dielectric
regions of arbitrary cross-sections within a conducting enclosure.
Conducting strips may also be present at the interface between two di-
electric regions. It is assumed that the thickness of the conductors

is negligible.

In Section II the problem is formulated on the basis of the
equivalence principle. A set of linear integro-differential operator
equations for the equivalent current sources are obtained by applying the
appropriate boundary conditions at each interface. 1In Section III the

operator equations are converted into a matrix formulation by the method

Note: Manuscript submitted July 29, 1977.




of moments [6,7,8]. The numerical methods used to determine the
propagation characteristics and results for specific examples are

described in Section IV.

II. INTEGRO-DIFFERENTIAL EQUATIONS

Fig.l shows the gemeric cross-section of the guiding structure

under consideration. N is the number of discrete homogeneous,
isotropic dielectric regions inside the conducting enclosure. The
heavy lines on the interface between two dielectric regioms denote
conducting strips. The electric {E) and magnetic ig) fields in each
: : region will be obtained by applying the principle of equivalence [5].

In accordance with this principle the dielectric medium of the p-th

region (characterized by permittivity ep) is fictitiously extended to
£f111 all space and combinations of electric (}p) and magnetic E;p)

surface current sources are conceptually placed on the boundary S of
the p-th region. -:Ip andﬁ are to be determined in such a way that |
- . E.and ; are zero everywhere outside Sp and are identical to the fields

EP and HP at each point in the interior of the p-th region for the

original problem shown in Fig. 1. This procedure is repeated for each

of the regions inside the conducting enclosure. The current sources

é for the various regions are not all independent because of the boundary




conditions to be satisfied at all the interfaces. Fig.2 symbolically

shows the contour of the p-th region and the surface current distri-

butions on it. ﬁp is taken to be zero on the conducting segments of

| the boundary. Also shown in Fig.2 is a left-handed coordinate system
with unit vectors /1\'P, Ir\ap and /z\. Qp is tangential to the comtour cp
(counterclockwise), QP inward drawn normal to the region p and Q
perpendicular to the plane of Fig.2. For two adjacent regions p and p',
we have Qp = - /}p' and %p = - an, on the portion of boundary common

to both the comtours cp and cp,. lz\ is the same for all regionms.

I Since 3’9 and ﬁp are surface currents, we have the relatioms:

' P

| (1)

| A -Op

. J = 0 .
i o
From the equivalence principle: 3

- - A - - - :
P (6, 2) =0 x B’ (p, 2)

2)

- A - -
P (e, z)= -n X EP” (p, 2)

|
|
|
|




where E P and HP® denote, respectively, the electric and magnetic
fields at a point just inside the contour cp. ; is a position vector
in the tangential plane. In equatiomn (2) 3 is on cp.

From Maxwell's equations the electric ED and magnetic (H® fields

at any point in the crossseccion of Fig.2 may be written as

S P TP P P
-€_ E"=UXF" +3je A" + ¢ 3
. b ] b @ pvce s 3)
""'oH YXA +ju.°<nF +u°vcpm 5 %)

where.p = 1. 25 ses N ry and q:ep are the vector and scalar potentials,
respectively, due to the electric current sources (3‘p) residing on the
contour cp. Similarly, FP and q:mp are the vector and scaiag potentials,
respectively, due to the magnetic current sources (ﬁp) residing aiong

cp. B is the free space permeability. In equations (3)-(4) a time
dependence of em’t has been assumed for the sources.

The potentials A, F, o, and 9, are given by

- - +1wt i - -
AP (, z, t) = b e § IP (o, z)C(kg R)dr' , (5)
c
P
prEar: +iwt - =
F(@,z t) = ¢e P @, z)c(k‘; R)dr' (6)
c
)
- iwt T s
o @, 2z t) = -(1/jue ) e AR AN CHNE RO T\ CS STL IR €2
c
P




iwt
wg (b, 2, £) = =(1/juu )e §> v'- MG, 2z, t)G(kgR)d'r' ; (8)

c
P

where R = l; - F'I is the distance between a field point (E) and a
source point (;'), kg = lu.osp w® + k:l% and G(kg R) is the two-
dimensional Green's function. If (p.oepw’+ k:) is positive, G(x) can be
expressed in terms of Hc(’z)(x), the zero order Hankel function of the
second kind, as

(a)

G(x) = (1/41)30 (x); 9)
while for (|.|.¢pa)3 + k:) negative
G(x) = (1/2m) KO(X) s - (10)

where KO (x) is the zero order modified Bessel functiom.
The gradient operators vy and v'operate on the field points and the
source points respectively. The operator v 'may be written as

T e AD
v Vc*"'az (11)

where V;: is the tangential part of~ the vector. The electric (Ep) and
magnetic (ﬁp) fields in the p-th can be calculated by substituting Egs.

Eqs. (5)--(10) in Eqs. (3) and (4). We assume that the sources vary

-k _z
as e 2

along the z-axis. For lossless propagation kz = i, By using
the one-dimensional divergence theorem terms like (Vt': . 3p )G in Eqs.(7)

and (8) may be expressed in the fomm 3p . VL G. Furthermore, we have

s
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v, G(koR\ v, G(kpR, R kp v (12)

\ - -
where x = kf;R and R= (p - p')/R is the unit vector frum the source

point (3') to the field point (;). Using these relations and after
some vector manipulations the tangential components of Ep and ﬁ Pata

point P_ just inside the comtour cp may be expressed in the following

form:
R BT RE
P‘. s T Z_ y SE 0 + (P Ui !
Ez juow J’d'r Jz' G(x) {1+_e_ka ‘+; = jdr J-r' T+ RG'(x)
po P o
(13)
kp A A A~
+§2 dr' n'- R G'(x) Mg. s
o
k kP
pP- 2.0 A 4 ' p
E'r -ju.ow[fd'r ) - R G'(x) Jz,
e k
P
kP ey P
-J’ch"Jp ;(-?’- ;) G(x) + —== G{(x) + —— G ‘1;.)(1' =B s
o e k3R € k3
po P o
(14)
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kp R

kg r A kz A ~
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= : € k3R
P o
b R %
+ ?L— (Gp\ e R)(# - Rle"x) - -1 elix)d
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Here we have replaced the variable M by M , where

End

p 52p
M =-j(€o/uo) M 3 (17

-

so that MP is of the same dimension as JP . T = ep/eo is the relative

P
dielectric constant of the p-th regionm. ko =w Vu.oe = is the free space

wave vector. (@, 7, Z) and (R', 7', 2') denote unit vectors at the field




point (P) and the source points (P'), respect’.rzly. Also G'(x) = 3G(x)/3x
and G"(x) = 3°G/3x” with x = kg R

If the dielectric medium of tue p-th region is fictitiously ex-
tended to all space, then the tangential components of the fields at a

point P, just outside the contour cp are given by (See Eq.(2))

Pt B 5 P
E, =B +3@le) ¥ |,
(18)
pE P ¥«p
E'r E‘r j('J'o/aa) Mz ?
p+ = ps “ (€ \% 4
H H JC& /u ) et 40
(19)
R 5 .p
H H +j(€o/u.°) I

Equations (13)-(19) for the tangential components of EP and HP hold
for each of the dielectric regions p - 1,2, ...., N.
The following boundary conditions are now imposed for ecach of the
N dielectric regions in the problem at hand. On the conducting surfaces
E:' =0 ',

)
ET 0

and on the dielectric-dielectric interfaces




where E and H are given by equations (13)-(19). The region p' is
adjacent to the p-th region in the structure shown in Fig.l. On the
portion of the contour common to regions p and p', G = 2 anq 2=z
In equatioms (20)-(22), p =1, 2, ...., N. Also for each p in equaﬁions
(22), pf & A reere s Np where Np is the number of regions adjoining
the p-th region.

On substitution of equations (13)-(19) in equations (20)=-(22), we
obtain the set of integral equations to be satisfied by the current
sources 3 5 MP in all regioms. JP and MP in the different regions
are not all independent because of the boundary conditions in Equation (22).

From equations (2) and (22) it is seen that

on the dielectric-dielectric interfaces.




III. MATRIX FORMULATION

The propagation characteristics are determined by solving the
system of equations (13)-(22). These equations are‘reduced to matrix
form by the method of moments L6]. The simplest approximation con-
sists of using pulse functions for a basis and point matching for
testing. For this purpose the contour cp is divided into nP segments 1
and pulse functions defined as: ”

fg(a) = 1 on B-th segment,

2 £23)
f = 0 on all other segments.
The segments are not necessarily of equal length.
Let: ?
‘ = — o - - - 1:
P P p :
J S S |
Bl Bl 4
3
P P P P P i
J o, 852 n SBz (24) i
; = E fg + z % = |
Mz Rl : B=np+1 853
c
P P
M‘r 0 SB&»
L J 3 = - o
where

nz = number of conductor segments on ey s

ng =af . nz = number of dielectric segments on cp .

10 |




The segment numbers have been rearranged such that g =1, 2, ...., nz

P are dielectric

represent conductor segments and B = nz S B
segments.

On substitution of Equation (24) in Equations (13)-(22) and
satisfying the resultant equations at the midpoint of each segment

we obtain the following system of equations: Equations (20) and (21)

become:

n.p'u

af
C a -p
ZP&SE*‘ % e S, p "0 (25)

>
o
U
[ oad

where
(GECH L vl Sl oo P b

P.ﬂ 1, 2’ Qono’N ’ “

and equation (22) transforms into:

p P
P &P
R S + TP S
p
T 68 B=T 8, Bnl p+nf
26
o P (26)
C

P
d
—P' _p' _p' s O

+ R S Lo 1 -
Bz-; §'8 B+ gy 6'.BmR )

where the index & runs over all dielectric segments common to the
adjoining regions p and p'. The index §' for the contour cp, refers

to the same segment as the index § for the contour cp. A set of

11

—




W

!
|

b et S s

equations similar to Equation (26) holds for each distinct pair (p, p')

of adjacent regions. In equations (25) and (26), SP is a 1x2 vector

g

representing the two components of J the electric current source on

B’
the B-th conductor segment of contour cp. The lf? vector §g’ denotes
the two components of 3’p aud two components of ‘I:;B , the current
sources on the B-th dielectric segment cn contour cﬁ. Each element ?25
is a 2x2 submatrix and each-elgpent an a 2x4 submatrix. The two rows
of these submatrices correspond to the two components of EP . Similarly
each element RpB (and Roﬁ ) is a 4x2 submatrix and each element

QB or TPB a 4x4 submatrix. The four rows of these submatr%:fs
correspond to the two components of EP and two components of ’EP in
Equation (22). The explicit forms of the matrix element of ng c
Qgs 3 RP o4 RP and TP are shown in the Appendix.

ap’ ‘ap’ "aB ap

Equation (25) is a set of 2aP equations in an + 4n§ variables
for the p~-th region. Equation (26) is a set of 4m equations (m being
the number of dielectric segments common to regions p and p') in
2:12 + Ans + an’+ Ang'vn.tiables of the regions p and p'. These equatioms
for all the N regions and for all distinct pairs of adjacent regioms
can be manipulated in such a way that the current sources g on the
dielectric segments are expressed in terms of s , the current sources

on the conductor segments and then a matrix equation involving B

only is obtained:

HS =0, (27)

12




S e e L ., -

where S is a one-column vector with M components given by:

N

M=2 Eni (28)

p=1
and H is a MXM matrix,
If the cross-section of the guiding structure is symmetrical about
an axis in the transverse plane, then the problem can be reduced to
modes having either even or odd symmetry with respect to this axis.

In such a case, we have (for the ordering of segments as in Fig.3):

LT T
B’j np + 1 - s’ j 3
c
5 = +-03* 3
nz-l-a,j np+1-a,j 5 (29)
3e = +(-1)3  FP
nz+a,j+2 P+1-a,]+2,
where
j=1, 2

W Ly 2y vvens nzlz ;

L, 2y svevy nglz .

The +(-) sign in Equation (29) applies to modes with even (odd) symmetry.

13




By virtue of the definitions used for Z and 7, for even symmetry modes

Jz and g'r remain unaltered while J‘r and gllz changes sign under reflection

about the symmetry axis. The opposite is true for odd symmetry modes.
Using Equation (29) the set of equatioms given by Equations (25)

and (26) can be reduced to the following form:

P P
Re/2 %4/2
—p. -
2 |-P;a SB G a?upa, nzﬁs Sp =0 s (30)
B=1 B=1 ol +8
P P
nc 2 i nd. 2
P 3P P S P
353 Sﬁ & .1"'6, nP+ B np+B :
B=1 B=1 : (31)
p’ P’
nc nd 2 ¢ )
_p! _pl —P -p
+ R S” + S =0 .
wé'g B s, n?ﬁ-s oP' .
B’ 1 6:1 e

where = 1, 2, ...., nP/2 and the index § runs over the dielectric

segments common to regions p and p' lyi .z to the right of the symmetry

axis in Fig.3. The indices p, p' and 8' have the same meaning as in

Equations (25) and (26). In equations (30) and (31), the quantities
P 14 RP 5

306 "\505 am:lmlsaB are given by the relationm:

yd*l 4P > : (32)

1j B )iy @ B +B 14y

AP = [ AP + (-1
was
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e s

and Qp,.,: > Epa,e and EPQ 8 have the form:

P .1 p
A . ~ A
R Cra n: =68 a, n + B a ,np+1-B for j =1,2
i ij ij
= 4-(-1)-j AP for j = 2, 3.
a, o® .+ 8 a, nP+1-g
ij
(33)

The (+) and (-) signs in Equation (33) apply to the even and odd symmetry

modes respectively. After elimination of the variables gﬁp » an equation
similar to Equation (27) is obtained where H is now of dimension (M/2) x
.(M/2), Because of the smaller dimension, the computation time for the ‘

calculation of the determinant of the matrix H is greatly reduced.

IV. NUMERICAL RESULTS

Since the components of the vector S in Equation (27) are all

independent, a solution exists if and only if
Det |H(f, kp)| = O, (34)

where f = w/2m is the operating frequency and kz is the phase constant

in the direction of propagation. For a given f, the propagation constant
is determined by finding kz such that Equation (34) is satisfied. There
will be several values of kz for each f corresponding to different order

modes. The cut-off frequencies for the different modes may be obtained

15




by searching for f such that Det ,H| = 0 when kz = 0. In general,

Det |H| is complex. So Equation (34) implies that

RelDet #] = 0 , (35)

ImlDet ul = 0 =

The expansion set .used inEquation (24) is only an approximation to the
é;act current sources. Due to this approximation, the values of kz
needed to satisfy Equations (35) and (36) are, in general, slightly
different. Therefore, an adequate approximate solution is obtained

by requiring that:
|pet (u(E, kz))| = minimum. 37)

In actual numerical calculation a few spurious roots occur in the solution
of Equation (34). The actual roots are identified by the following three
criteria: (1) k: that gives the deepest local minimum in |Det H|,
(2) real and imaginary parts of Det H should change sign near k: , and
(3) the difference in the values of kz satisfying Equations (35) and (36)
is smallest. Also, the spurious roots shift appreciably when the number
of segments in a contour is changed 7 7 0

To illustrate the accuracy of the present method, results computed
for a shielded-microstrip cross-section shown in Fig.4 are plotted in
Fiz.5. The calculated dispersion characteristics of the fundamental and

higher order even-symmetry modes agree reasonably well with the theoretical




results in references 2 and 4. Although only even-symmetry modes
are shown in Fig.5, the method is applicable to all types of modes,
symmetric or otherwise.

We next show the dispersiom characteristics of a channelized
suspended microstrip (9]. The cross-section of the structure is
shown in Fig.6. The channel located above the conducting strip helps
suppress higher-order mode propagation. The structure has two
additional useful features: (1) reduced dissipation loss [103, and
(2) easier fabrication due to wider strip widths for 50Q impedance
level. The calculated dispersion curves are shown in Fig.7. The
lawer three curves represent the fundamental mode for three
different values of W/H (= 1, 3, 4), the ratio of the width of the
conducting strip and the height of the channel above it. The upper
two curves are two higher order (even symmetry) modes for W/H = 3,
The associated TEM phase constants in air and dielectric material
(er = 10.0) are shown in the figure for reference. As can be seen in
Fig.7, the phase constants for the fundamental mode at lower frequencies
are nearer to that in air and at high frequencies go towards the values
for the dielectric medium. The cut-off frequencies for the next two

even-symmetry higher order modes are 17.2 GHz and 27.4 GHz, respectively.

V. DISCUSSION
The computer-aided analyses described in this paper can determine
the dispersion and higher order mode characteristics for a wide variety

of transmission structures having different geometries and material




parameters. The analyses includes the effects on propagation due

to an arbitrarily shaped conducting enclosure. The analyses presented
here can provide design information for planar transmission media
which employ composite conductor and/or dielectric materials. The
analysis can be readily extended to determine other propagation
characteristics such as electric and magnetic field distributionms,

modal currents, impedance parameters and dissipation losses.

18
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APPENDIX

The matrices P, Q, R, E, T and —T in Equations (25) and (26) may
be obtained in a straightforward manner by substituting Equations
(13)-(19) and Equation (24) in Equations (20)-(22) as stated in the
text.

The matrix elements P?IB for @ # B are given by:

kﬁ
P foiie z P
(Pae e l+2k’ GO Ry
P o
P = P;T 13 £ap A LA
(PQB) £ (kz kp/cpko) ede )7 -8, %
PP = [k kB/5 3 (¥R _.) T.-R__W e
o8 ) 21 z P'p o aB a eg ' ?
k5
& Ay P ' p
(Ppae)zz ' BI N +; 95 ®.% Raﬂ)}wﬁ
p o QB
G"xP R )
- pa— 3 R = .A P -——o—&
{(kp) /epko} G B0 - B {c A
0 "B

-

where Raﬂ - [pa - psl and RaB = (pa - pB)/ROtB < Py is the position

vector of the midpoint of the m-th segment and T and o, denote,

(04
respectively the unit vectors at that point along the tangent and the

W

B is the width of the m-th segment. For ¢ =8

normal to the contour.

19
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e

P kpgwa k:
= 5 - B’
(Paa> 11 (WG/ZTT it 4 e (1 ; T k3 .
P O

kW
(PP )22= W /2m )litn _z_g -1+v} +8] ,

(#) o= ()aes

lr =
where Y is the Euler Constant and B=-!5_lif (ep k: + k:)ZO while B = 0

(a2)

1f (e Xk® +%°) <o.
p o z

The matrix elements QI::!B are given by:
' i=1, 2
(@) (%), = 1381 -

- P ' P o ey
A (kp/ko) G (kpRae) ng Raﬁws .

)

(%) "0
)
)

(a3)

- (k/k) 0 p~ G(xP )
20 z o nB Ta (DRQB V{p)

a(kP 8.3 v (1P
23 .(kplko) " Raﬁ : (kﬂ Raﬁ)v{a’)

20




p P E
(Qo‘o‘) 1t <QO‘°‘> 23 T :
p p
= (e -0 ,
@aa) 13 ( aa) 24

for a = B.

The expressions for R . are:

"

), (%)
(%) (%)
%) (%)n
)a " (%)

Q"

g

/

\RB 42 -(Qg‘ﬁ

while that for 'rg are:

= [ 8P - - :
<r§5> 2 <R°‘5>1j ,i=1,2,3, 64and j=1,2 )>

T’) Q") ,i=1,2and j =3, 4
(O‘e 13'(0‘315 -

21
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(a4)

(a5)

(46)
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3 and

) Ry
i
; Tp - 8 P ) ‘
‘ (“‘5 33 #ROR i
i :
(as) aly . F (ae) 22
y = E
{ = -
\0‘5) 3 T Qg‘s) 21
‘ Finally, '
RP = (- (& (B

and

—p 3 o i
(Taa) & (-1) (%e) ol (A10)

to account for the alternate "+'" and "-" signs on the left-hand side of the

four equations in Equation (22).
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Fig. 1. Generic cross-section of mixed conductors
and dielectrics in conducting enclosure
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Fig. 2. Conceptual treatment of currents and fields for the p-th
region. 7, i and 2 are unit vectors along three orthogonal
coordinates axes used in the text. 2 is normal to the plane of the
paper pointing up.
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Fig. 3. Symmetric waveguide cross-section showing
the ordering of the segments for a case with nP = 22,
nlc’ =8, and ng = 14
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Fig. 4. Cross-section for microstrip
in a conducting box
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Fig. 5. Dispersion characteristics for
microstrip in a conducting box
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Fig. 7. Dispersion characteristics for channelized suspended
microstrip. W = width of the conducting strip and H = height
of the channel above it.
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